ARCH 4150: Whole Building Analysis

RESIDENTIAL HALL

FOURTH STREET

Brooke Helgerson and Katlyn Flannery
Doug Harsevoort and Nic Holzhauer
Erin Kelleher and Sebastian Marquez
Xiaoyu Liu and Josh Miller
The information gathered from our midterm analyses informed some of our decisions going into our final analyses:

- Exterior Wall R-values: optimal at $R = 45$
- Roof R-values: optimal between $R = 60-80$
- Overhangs less than 2’ long
- High window placement while still providing views
- Triple pane windows have minimal benefits from double pane
RESIDENCE HALL BUILDING TRENDS

Res Halls across the country are starting to use:

- renewable energy systems
- compact fluorescent lamps
- solar panels
- efficient water systems
- recycling waste facilities
- bicycle storage

Increasing trend of construction ‘green’ campus residential buildings.

BUNDLE ANALYSIS

-Bundling combines multiple strategies into one building
-Clients can see different sets of strategies and related costs to pick the best applications for their needs

OUR ANALYSIS:
-**Bundle 1** focuses on advanced mechanical systems and envelope strategies
-**Bundle 2** takes a daylight-mechanical-water approach to achieve greater energy use reduction
-**Bundle 3** combines these strategies for even greater reduction

BUNDLE BREAKDOWN-4th STREET RESIDENCE

<table>
<thead>
<tr>
<th>Renewable/Reduction Strategies</th>
<th>BUNDLE 1</th>
<th>BUNDLE 2</th>
<th>BUNDLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope Used Throughout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall R Value</td>
<td>R41.8</td>
<td>R41.8</td>
<td>R41.8</td>
</tr>
<tr>
<td>Roof R Value</td>
<td>R68.9</td>
<td>R68.9</td>
<td>R68.9</td>
</tr>
<tr>
<td>Window U Value</td>
<td>U.343</td>
<td>U.343</td>
<td>U.343</td>
</tr>
</tbody>
</table>

Daylighting			
Green Roof	X	X	X
Solar PV	X	X	X
Lightshelves	X	X	X
Window Placement- high and low	X	X	X
Overhangs			X
Visible Light Transmittance	X		X

Advanced Mechanical Systems			
Radiant Floor Heating	X	X	X
Radiant Floor Cooling	X	X	X
Ground Source Heat Pump	X		X

Advanced Envelope Systems			
Trombe Wall	X		X
Living Wall	X		X

Water			
Low Flow Fixtures	X	X	X
Rainwater reuse	X	X	X
Greywater Reuse	X	X	X
Blackwater Reuse	X	X	X

| **Wastewater Treatment** | | | |
| Living Machine | X | | X |
Model Properties Used:
- Building Type = Dormitory
- Exterior Walls = 4” face brick, 2” insulation and 4” light weight concrete block (U = .0971)
- Interior Walls = Lightweight plasterboard partition (U = .2807)
- Ground Floor Slabs = Un-insulated solid ground floor (U= .1243)
- Roof = Flat roof (insulated to 1995 UK Regulation U = .0401)
- Upper Floors = 2” Light weight concrete floor deck (U = .5278)
- Doors = Metal Door (U = .652)
- Exterior Windows = Low E Double Glazing (6mm+6mm) (2002 UK Reg) (U = .3435)
LIGHTING
LIGHTSHELVES, OVERHANGS, AND WINDOW PLACEMENT

BUNDLE 1

-18” overhangs

BUNDLE 2

-18” light shelf 7’ above floor
-2 sets of 2’ tall windows at 3’ and 7’ above the floor

BUNDLE 3

-18” overhangs and light-shelves
-windows as in bundle 2

-Radiance images show the best light distribution when using a combination of lightshelves and overhangs in Bundle 3
LIGHTING
VISIBLE LIGHT TRANSMITTANCE (VLT)

BUNDLE 1

- 70% VLT
 - Shading devices had minimal impact on the lighting conditions and the room was too bright.

BUNDLE 2

- 30% VLT
 - Light shelves made the light distribution more even, but also blocked some of the light coming in.

BUNDLE 3

- 50% VLT
 - A balance for VLT was hard to reach, but our final bundle used a combination of overhangs and light shelves to achieve a better VLT.
WATER
USE OF LOW FLOW FIXTURES

FIXTURE BREAKDOWN:
Water Closets = 120
Urinals = 40
Water Basins = 160
Kitchen Sinks = 4

BUNDLE 1
-50% conventional fixtures
50% low-flow

BUNDLE 2
-0% conventional
100% low-flow

BUNDLE 3
-0% conventional
100% low-flow
WATER REUSE

BUNDLE 1
- Proposed building water consumption: 3620490.1 US gals/yr
- 20.8 US gals/ft² yr
- 1072.4 US gals/person yr
- 47% Reduction

-Catchment area 5,382 sf.
-10% of site impervious pavement and building footprint
-47% REDUCTION

BUNDLE 2
- Proposed building water consumption: 1525017.1 US gals/yr
- 8.7 US gals/ft² yr
- 451.7 US gals/person yr
- 79% Reduction

-Catchment area 50,821 sf.
-100% of site impervious pavement and building footprint
-79% REDUCTION

BUNDLE 3
- Proposed building water consumption: 1384430.0 US gals/yr
- 7.9 US gals/ft² yr
- 410.1 US gals/person yr
- 82% Reduction

-Catchment area 50,821 sf.
-100% of site impervious pavement and building footprint
-82% REDUCTION
ADVANCED ENVELOPE STRATEGIES

LIVING WALL

BUNDLE 1
- 1,500 sf. of E and W walls
- 3,500 sf. of S wall
- ENERGY SAVINGS: 10,989 kBTU

BUNDLE 2
- [strategy not used for bundle 2]

BUNDLE 3
- 3,000 sf. of E and W walls
- 5,000 sf. of S wall
- ENERGY SAVINGS: 13,896 kBTU

TROMBE WALL

BUNDLE 1
- 1,000 sf.
- ENERGY SAVINGS: 10,989 kBTU

BUNDLE 2
- [strategy not used for bundle 2]

BUNDLE 3
- 2,000 sf.
- ENERGY SAVINGS: 13,889 kBTU

GREEN ROOF

BUNDLE 1
- 25% of roof area
- ENERGY SAVINGS: 14,041 kBTU

BUNDLE 2
- 50% of roof area
- ENERGY SAVINGS: 21,064 kBTU

BUNDLE 3
- 100% of roof area
- ENERGY SAVINGS: 35,636 kBTU
RENEWABLES

PV PANELS

BUNDLE 1

- 5% of building energy supplied by roof PV
- square footage requirements: 18,525 sf

BUNDLE 2

- 10% of building energy supplied by roof PV
- square footage requirements: 34,680 sf

BUNDLE 3

- 30% of building energy supplied by roof PV
- square footage requirements: 39,336 sf

SOLAR THERMAL DOMESTIC HOT WATER SYSTEM

BUNDLE 1

- 10% of system energy supplied by solar
- square footage requirements: 1,330 sf

BUNDLE 2

[strategy not used for bundle 2]

BUNDLE 3

- 30% of system energy supplied by solar
- square footage requirements: 3,990 sf
HEATING AND COOLING

RADIANT FLOOR HEATING

<table>
<thead>
<tr>
<th>Bundle 1</th>
<th>Bundle 2</th>
<th>Bundle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-[strategy not used for Bundle 1]</td>
<td>-184,121 sf</td>
<td>-184,121 sf</td>
</tr>
<tr>
<td>-ENERGY SAVINGS:</td>
<td>-ENERGY SAVINGS:</td>
<td>-ENERGY SAVINGS:</td>
</tr>
<tr>
<td>82,898 kBu</td>
<td>73,089 kBu</td>
<td></td>
</tr>
</tbody>
</table>

RADIANT FLOOR COOLING

<table>
<thead>
<tr>
<th>Bundle 1</th>
<th>Bundle 2</th>
<th>Bundle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-[strategy not used for Bundle 1]</td>
<td>-184,121 sf</td>
<td>-184,121 sf</td>
</tr>
<tr>
<td>-ENERGY SAVINGS:</td>
<td>-ENERGY SAVINGS:</td>
<td>-ENERGY SAVINGS:</td>
</tr>
<tr>
<td>165,796 kBu</td>
<td>146,840 kBu</td>
<td></td>
</tr>
</tbody>
</table>

GROUND SOURCE HEAT PUMP

<table>
<thead>
<tr>
<th>Bundle 1</th>
<th>Bundle 2</th>
<th>Bundle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20% of load</td>
<td>-50% of load</td>
<td>-70% of load</td>
</tr>
<tr>
<td>-ENERGY SAVINGS:</td>
<td>-ENERGY SAVINGS:</td>
<td>-ENERGY SAVINGS:</td>
</tr>
<tr>
<td>307,481 kBu</td>
<td>632,935 kBu</td>
<td>874,145 kBu</td>
</tr>
</tbody>
</table>

CHILLED BEAM

<table>
<thead>
<tr>
<th>Bundle 1</th>
<th>Bundle 2</th>
<th>Bundle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-[strategy not used for Bundle 1]</td>
<td>-184,121 sf</td>
<td>-184,121 sf</td>
</tr>
<tr>
<td>-COOLING ENERGY SAVINGS:</td>
<td>-COOLING ENERGY SAVINGS:</td>
<td>-COOLING ENERGY SAVINGS:</td>
</tr>
<tr>
<td>165,796 kBu</td>
<td>146,919 kBu</td>
<td>146,919 kBu</td>
</tr>
</tbody>
</table>
OVERALL BUILDING ENERGY REDUCTIONS

Baseline		Building 1		Building 2		Building 3

KBtu

- Total Ann. Equip. Load (KBtu)
 - Baseline: 1,338,895
 - Building 1: 764,024
 - Building 2: 764,024
 - Building 3: 764,024

- Total Solar Thermal Output (kBTu)
 - Baseline: -
 - Building 1: (347,760.000)
 - Building 2: -
 - Building 3: -1,090,320

- PV production (kBTu)
 - Baseline: -
 - Building 1: (3,137,105.413)
 - Building 2: (5,872,075)
 - Building 3: -6,654,684

- Total Ann. Lighting Load (kBTu)
 - Baseline: 3,482,092
 - Building 1: 1,692,992
 - Building 2: 2,605,322
 - Building 3: 2,605,322

- HVAC Fans and Pumps (KBtu)
 - Baseline: 153,430
 - Building 1: 619,387
 - Building 2: 557,279
 - Building 3: 544,608

- Total Ann. Cooling Load (kBTu)
 - Baseline: 472,933
 - Building 1: 1,386,646
 - Building 2: 953,406
 - Building 3: 611,670

- Total Ann. Heating Load (kBTu)
 - Baseline: 12,136,217
 - Building 1: 3,043,648
 - Building 2: 1,989,554
 - Building 3: 1,753,186

Building Energy Use

KBtu

- 0
- 5,000,000
- 10,000,000
- 15,000,000
- 20,000,000
COST COMPARISON

WATER SYSTEM COSTS

<table>
<thead>
<tr>
<th>Capital Costs</th>
<th>Base Case</th>
<th>Design Case 1</th>
<th>Design Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixtures</td>
<td>$158,260.00</td>
<td>$279,825.00</td>
<td>$441,285.00</td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td>$1,695,900.00</td>
<td>$2,027,500.00</td>
<td>$2,701,900.00</td>
</tr>
<tr>
<td>Water Hookup</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>Totals</td>
<td>$1,856,160.00</td>
<td>$2,309,325.00</td>
<td>$3,145,185.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Costs</th>
<th>Base Case</th>
<th>Design Case 1</th>
<th>Design Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixtures Demand</td>
<td>$15,553.75</td>
<td>$5,970.76</td>
<td>$1,348.29</td>
</tr>
<tr>
<td>Mechanical Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td>$66,180.00</td>
<td>$51,954.00</td>
<td>$44,860.00</td>
</tr>
<tr>
<td>Sewage</td>
<td>$2,402.40</td>
<td>$2,300.03</td>
<td>$1,868.28</td>
</tr>
<tr>
<td>Runoff</td>
<td>$11,171.81</td>
<td>$9,546.89</td>
<td>$7,880.77</td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape - Irrigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>$95,307.96</td>
<td>$69,771.68</td>
<td>$55,957.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Escalation Factors</th>
<th>Base Case</th>
<th>Design Case 1</th>
<th>Design Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Rate</td>
<td>5.00%</td>
<td>5.00%</td>
<td>5.00%</td>
</tr>
<tr>
<td>Water Rate</td>
<td>7.00%</td>
<td>7.00%</td>
<td>7.00%</td>
</tr>
<tr>
<td>Electricity</td>
<td>12.00%</td>
<td>12.00%</td>
<td>12.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payback (yrs)</th>
<th>Base Case</th>
<th>Design Case 1</th>
<th>Design Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

Note: A value of 0 pays back in the first year. A value of 501 never pays back.

- Attention to water systems like low-flow fixtures can easily decrease the amount of water demanded and contribute to the quick payback (10-14 years) of more sustainable systems.

NOTE: An error in the Calculator prevented us from obtaining water costs data for Design Case 3
COST COMPARISON

OVERALL BUNDLE COSTS

<table>
<thead>
<tr>
<th>Building Energy Costs (Excluding RE system generation)</th>
<th>Baseline</th>
<th>Building 1</th>
<th>Building 2</th>
<th>Building 3 Zero+ Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Energy Costs</td>
<td>$264,226</td>
<td>$151,508</td>
<td>$142,830</td>
<td>$128,595</td>
</tr>
<tr>
<td>Heating Cost</td>
<td>$128,097</td>
<td>$32,670</td>
<td>$21,000</td>
<td>$18,505</td>
</tr>
<tr>
<td>Cooling Cost</td>
<td>$3,610</td>
<td>$9,379</td>
<td>$7,277</td>
<td>$4,669</td>
</tr>
<tr>
<td>Fans & Pumps Cost</td>
<td>$3,848</td>
<td>$13,641</td>
<td>$13,977</td>
<td>$13,659</td>
</tr>
<tr>
<td>DWH Aux Systems Cost</td>
<td>$7,758</td>
<td>$34,195</td>
<td>$34,195</td>
<td>$34,195</td>
</tr>
<tr>
<td>Lighting Cost</td>
<td>$87,333</td>
<td>$42,461</td>
<td>$47,220</td>
<td>$38,406</td>
</tr>
<tr>
<td>Equip. Cost</td>
<td>$33,580</td>
<td>$19,162</td>
<td>$19,162</td>
<td>$19,162</td>
</tr>
</tbody>
</table>

-When taken together, all of the above strategies can combine to create a 51% decrease in total energy costs. Not only is this a significant reduction in the financial burden for a building’s lifetime, but also represents a reduction in energy use and more sustainable contribution to the built environment than conventional projects.
- **Lightshelves** successfully increase daylight penetration and distribution within a room.

- Overly bright conditions near windows can be reduced by **overhangs**.

- **Low-flow fixtures** significantly reduce the demand for potable water.

- Up-front costs are greater for **water catchment and reuse systems**, (green roof, rain, grey, and black water catchment and reuse, and low-flow fixtures), but their lower operational costs makes them financially feasible.

- Water strategies also provide ecological benefits by decreasing water runoff, among other things.

- The energy decrease obtained from **radiant heating and cooling** is significant in bringing down the overall energy use of a building.

- Use of **PV panels** can offset energy use by providing a renewable source.
RECOMMENDATIONS FOR IMPLEMENTATION

- Low flow fixtures to reduce water consumption
- Radiant floor heating and cooling
- Lightshelves and overhangs in combination for best light distribution
- PV panels and/or Solar Thermal DHW to help with energy payback
- Water catchment and reuse systems
- Green roof to provide energy reduction
- Living Machine on site to treat wastewater for reuse